Microscopio electrónico de barrido
Microscopio electrónico de barrido.
El Microscopio electrónico de barrido o SEM , es aquel que utiliza un haz de electrones en lugar de un haz de luz para formar una imagen. Tiene una gran profundidad de campo, la cual permite que se enfoque a la vez una gran parte de la muestra. También produce imágenes de alta resolución, que significa que características espacialmente cercanas en la muestra pueden ser examinadas a una alta magnificación. La preparación de las muestras es relativamente fácil pues la mayoría de SEMs sólo requieren que estas sean conductoras.
En el microscopio electrónico de barrido la muestra es recubierta con una capa de carbón o una capa delgada de un metal como el oro para darle propiedades conductoras a la muestra. Posteriormente es barrida con los electrones acelerados que viajan a través del cañón. Un detector mide la cantidad de electrones enviados que arroja la intensidad de la zona de muestra, siendo capaz de mostrar figuras en tres dimensiones, proyectados en una imagen de TV o una imagen digital. Su resolución está entre 3 y 20 nm, dependiendo del microscopio. Inventado en 1931 por Ernst Ruska, permite una aproximación profunda al mundo atómico. Permite obtener imágenes de gran resolución en materiales pétreos, metálicos y orgánicos. La luz se sustituye por un haz de electrones, las lentes por electroimanes y las muestras se hacen conductoras metalizando su superficie.
Funcionamiento
En el microscopio electrónico de barrido es necesario acelerar los electrones en un campo eléctrico, para aprovechar de esta manera su comportamiento ondulatorio, lo cual se lleva a cabo en la columna del microscopio, donde se aceleran por una diferencia de potencial de 1,000 a 30,000 voltios. Los electrones acelerados por un voltaje pequeño son utilizados para muestras muy sensibles, como podrían ser las muestras biológicas sin preparación adicional, o muestras muy aislantes. Los altos voltajes se utilizan para muestras metálicas, ya que éstas en general no sufren daños como las biológicas, y de esta manera se aprovecha la menor longitud de onda para tener una mejor resolución. Los electrones acelerados salen del cañón, y son enfocados por las lentes condensadora y objetiva, cuya función es reducir la imagen del filamento, de manera que incida en la muestra un haz de electrones lo más pequeño posible (para así tener una mejor resolución). Con las bobinas deflectoras se barre este fino haz de electrones sobre la muestra, punto por punto y línea por línea.
Cuando el haz incide sobre la muestra, se producen muchas interacciones entre los electrones del mismo haz, y los átomos de la muestra; puede haber por ejemplo, electrones rebotados como las bolas de billar. Por otra parte, la energía que pierden los electrones al "Chocar" contra la muestra puede hacer que otros electrones salgan despedidos (electrones secundarios), y producir rayos X, electrones Auger, etc. El más común de éstos es el que detecta electrones secundarios, y es con el que se hacen la mayoría de las imágenes de microscopios de barrido.
Podemos también adquirir la señal de Rayos X que se produce cuando se desprenden estos mismos de la muestra, y posteriormente hacer un análisis espectrográfico de la composición de la muestra.
Utilización
Cabeza de hormiga vista con un (MEB).
Son ampliamente utilizados en la biología celular. Aunque permite una menor capacidad de aumento que el microscopio electrónico de transmisión, este permite apreciar con mayor facilidad texturas y objetos en tres (3) dimensiones que hayan sido pulverizados metálicamente antes de su observación. Por esta razón solamente pueden ser observados organismos muertos, y no se puede ir más allá de la textura externa que se quiera ver. Los microscopios electrónicos sólo pueden ofrecer imágenes en blanco y negro puesto que no utilizan la luz.
Este instrumento permite la observación y caracterización superficial de materiales inorgánicos y orgánicos, entregando información morfológica del material analizado. A partir de él se producen distintos tipos de señal que se generan desde la muestra y se utilizan para examinar muchas de sus características. Con él se pueden realizar estudios de los aspectos morfológicos de zonas microscópicas de diversos materiales, además del procesamiento y análisis de las imágenes obtenidas.
Alfonso Herrera
Electronica del estado solido
seccion 1
No hay comentarios:
Publicar un comentario